2025.08.26 (화)

  • 구름많음동두천 29.3℃
  • 맑음강릉 33.1℃
  • 구름많음서울 29.7℃
  • 구름조금대전 30.6℃
  • 구름조금대구 30.8℃
  • 맑음울산 31.3℃
  • 구름조금광주 30.5℃
  • 맑음부산 31.2℃
  • 맑음고창 31.0℃
  • 맑음제주 31.5℃
  • 구름많음강화 28.8℃
  • 구름조금보은 27.9℃
  • 맑음금산 29.4℃
  • 구름조금강진군 30.8℃
  • 맑음경주시 31.7℃
  • 구름조금거제 30.6℃
기상청 제공

단백질간 '소통' 알츠하이머 독성 완화 규명으로 치료 길 열어

타우와 아밀로이드 베타가 실제 직접 소통하며 독성 조절한다는 사실 최초로 분자 수준에서 규명
타우의 성질이 아밀로이드 베타와의 결합력·응집 경로·독성 조절 능력을 결정짓는 핵심 요인임을 입증
KAIST 화학과 임미희 교수(금속신경단백질연구단 단장) 공동연구팀

전 세계 치매 환자는 약 5,000만 명으로 추산되며, 이 중 약 70% 이상을 차지하는 알츠하이머병은 대표적인 신경 퇴행성 뇌질환이다. 한국 연구진이 알츠하이머병의 두 핵심 병리 단백질인 타우와 아밀로이드 베타가 실제로 직접 소통하며 독성을 조절한다는 사실을 세계 최초로 분자 수준에서 규명했다. 이번 성과는 알츠하이머병의 병태생리를 새롭게 바라보게 하는 한편, 질환 조기 진단을 위한 바이오마커 발굴과 신경퇴행성 뇌질환 치료제 개발에 중요한 단서를 제공할 것으로 기대된다.

 

KAIST 화학과 임미희 교수(금속신경단백질연구단 단장) 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국기초과학지원연구원(KBSI, 원장 양성광) 첨단바이오의약연구부 이영호 박사 연구팀과 공동연구, 한국과학기술연구원(KIST, 원장 오상록) 뇌과학연구소 김윤경 박사, 임성수 박사 연구 참여로, 알츠하이머병의 주요 병리 단백질 중 하나인 타우의 미세소관 결합 영역(microtubule-binding domain)이 아밀로이드 베타와 직접적인 상호작용(타우-아밀로이드 베타 커뮤니케이션)을 통해 응집 경로를 변화시키고, 세포 독성을 완화할 수 있음을 분자 수준에서 규명했다▲ (왼쪽부터) 화학과 임미희 교수, 김민근 박사,             고 밝혔다.

     KBSI 이영호 박사                                      

 

알츠하이머병은 병리학적으로 신경세포 안에서 영양분과 신호물질을 운반하는 수송로 역할을 하는 단백질인 ‘타우’의 응집으로 형성된 ‘신경섬유 다발’과 뇌 속 신경세포 막에 뇌 발달, 세포 간 신호 전달, 신경세포 회복 등에 관여하는 아밀로이드 전구 단백질이 어떤 효소에 의해 비정상적으로 잘린 아밀로이드 베타 조각이 뭉쳐있는 ‘아밀로이드 베타 응집체’로 ‘아밀로이드 플라크(노인성 반점)’ 형태로 세포 내부와 외부에 각각 축적되는 특징을 보인다.

 

두 단백질은 공간적으로 분리된 위치에서 병적 구조물을 형성하지만, 타우와 아밀로이드 베타가 세포 내·외에 같이 존재하며 상호작용 가능성이 제시된 바 있다. 그러나 두 단백질의 직접적인 상호작용이 질환의 발병과 진행에 미치는 영향에 대한 분자 수준의 이해가 아직 명확히 밝혀지지 않은 상태다.

 

공동연구팀은 타우 단백질이 신경세포 안에서 미세소관(세포 내 수송로)에 붙는 구조(K18, R1-R4, PHF6*, PHF6) 중, K18, R2, R3이 아밀로이드 베타와 결합해 ‘타우–아밀로이드 베타 복합체(이종 복합체)’를 만들게 된다. 이 작용이 중요한 이유는 아밀로이드 베타가 원래대로라면 독성이 강한 딱딱한 섬유(아밀로이드 피브릴)로 쌓이게 되지만, 타우의 특정 부분이 붙으면 아밀로이드 베타가 독성이 낮고 덜 단단한 형태의 응집체 형성 경로로 전환할 수 있음을 밝혀냈다.

 

특히, 이들 타우 단백질의 반복 구조는 질환 발병과 연결되는 아밀로이드 응집이 처음 뭉치기 시작하는 과정(핵 형성 단계)을 지연시키고, 또한 질환 진행에 관계되는 아밀로이드 베타의 응집 속도와 구조적 형태를 동시에 변화시킨다. 그 결과, 뇌 세포 내·외 환경 모두에서 아밀로이드 베타가 일으키는 독성 수준을 뚜렷하게 감소시켰다.

 

이번 연구에서는 분광학, 질량분석, 등온 적정 열량측정법, 핵자기공명 등 정밀한 분석 기법과 함께 세포 기반 독성 평가를 결합해, 타우–아밀로이드 간 상호작용의 구조적, 열역학적, 기능적 특성을 종합적으로 분석했다.

그 결과, 타우 단백질의 특정부분(미세소관 결합 반복 구조)은 물과 잘 섞이는 성질(친수성)과 물과 잘 안 섞이는 성질(소수성)을 동시에 가지고 있고 이 두 성질의 균형이 잘 맞을 때, 타우는 아밀로이드 베타를 더 잘 결합하게 된다. 즉 타우의 성질이 아밀로이드 베타와의 결합력·응집 경로·독성 조절 능력을 결정짓는 핵심 요인임을 입증했다.

 

KBSI 이영호 박사는 “이번 연구는 난치성 신경퇴행성 질환인 치매의 발병 및 진행에 관한 새로운 분자 메커니즘을 규명했으며 특히, 분자 간 상호작용과 단백질 응집을 중심으로 한 다학제적 융합연구는 알츠하이머병과 파킨슨병 사이의 질환 간 상호작용은 물론, 치매, 당뇨병, 암 등 여러 질환 사이의 상호 연관성을 밝히는 데 중추적 역할을 할 것으로 기대된다”라고 밝혔다.

 

KAIST 임미희 교수는 “타우 단백질이 단순히 병리 생성에 기여하는 것이 아니라, 특정 미세소관 결합 반복 구조를 통해 아밀로이드 베타의 응집과 독성을 적극적으로 완화할 수 있는 분자적 기능을 수행한다는 점에서 기존의 병리적 이해에 새로운 전환점을 제시했다”라며, “이번 연구는 알츠하이머병뿐만 아니라 다양한 단백질 응집 기반 신경 퇴행성 뇌질환에서 치료 표적으로 작용할 수 있는 새로운 분자 모티프를 발굴했다는 데 의의가 있다”라고 말했다.

 

이번 연구는 KAIST 화학과 김민근 박사가 제1 저자로 국제 저명 학술지인   `네이처 케미컬 바이올로지(Nature Chemical Biology, Impact factor: 13.7, 화학 분야 상위 3.8%)'에 8월 22일 게재됐다. 

 

한편, 이번 연구는 한국연구재단의 기초연구사업(리더연구 및 중견연구), 중견연구자지원사업 및 세종과학펠로우십과 KBSI와 KIST 지원을 받아 진행됐다.

 

그림 1. 타우 미세소관 결합 영역과 상호작용에 의한 아밀로이드 베타의 병리학적 특성 변화

 

그림 2. 타우 미세소관 결합 반복 구조와 아밀로이드 베타와의 직접적인 상호작용 및 영향. a, K18, R2, R3과 아밀로이드 베타 이종 복합체 형성. b, K18, R2, R3에 의한 아밀로이드 베타 응집 속도 및 섬유화 변화. c, 타우 단편과 아밀로이드 베타의 도킹 구조 예측

 

그림 3. 타우 미세소관 결합 영역에 의한 아밀로이드 베타 유도 세포 독성 완화. a, 세포 실험 독성 실험 설계. b, 세포 외부 환경에서 K18, R2, R3에 의한 아밀로이드 베타 독성 완화. c, 세포 내부 환경에서 K18, R2, R3에 의한 아밀로이드 베타 독성 억제

 


배너